
Interactive Web Caching for Slow or Intermittent Networks

Jay Chen
New York University - Abu Dhabi

jchen@cs.nyu.edu

Lakshmi Subramanian
New York University

lakshmi@cs.nyu.edu

ABSTRACT

We explore the limitations of existing caching mechanisms in slow
networks and propose a new model of web caching designed for
developing regions called interactive caching. Unlike conventional
caching, interactive caching makes interacting with the cache the
focus of web browsing when the connection is bad. Interactive
caching achieves this by organizing the cache into topics for pre-
sentation to the user, optimizing for latency, and unaliasing cached
content. In this paper we implement a prototypical version of inter-
active caching that includes: topic identification and presentation, a
latency aware value function, DNS caching, and missing hyperlink
suggestions. We evaluate our system based on a system implemen-
tation and web traces from multiple web cache deployments across
different geographic locations in developing regions. We show how
interactive caching can dramatically improve the user experience
for slow connections by allowing users to explore the cache using
trending topics that cover 60 - 80% of requests and reducing page
load times by up to 72.86%.

Categories and Subject Descriptors

C.2.1 [Computer Systems Organization]: Network Architecture
and Design

General Terms

Performance, Human factors, Design, Experimentation

Keywords

caching; developing regions; latency; web

1. INTRODUCTION
The web is largely unusable or prohibitively slow in many re-

gions in the developing world due to poor network connectivity.
Basic connectivity and bandwidth continue to be limited in these
regions [11, 38]. When connections do exist, intermittent connec-
tivity and latencies to servers become the bottleneck. Under poor

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from Permissions@acm.org.

ACM DEV 4, December 6–7, 2013, Cape Town, South Africa.
Copyright 2013 ACM 978-1-4503-2558-5/13/12 ...$15.00.
http://dx.doi.org/10.1145/2537052.2537057.

connectivity conditions such as these, conventional web optimiza-
tions provide limited benefits. Typical network-level optimizations
are severely constrained by the lack of reasonable bandwidth and
conventional caching results in decreasing cache hit rates as the
web grows in both size and complexity.

These global trends in web growth and degrading performance
despite bandwidth improvements are gradually being recognized
by the mainstream internetworking community; several recent works
argue for a significant rearchitecting of the Internet [27]. Unfor-
tunately, these fundamental trends are even more detrimental to
web performance in developing regions. While there are works
that have proposed changes to web access under poor connectiv-
ity [9, 13, 17, 19, 32–34, 46], more aggressive solutions are needed
if long-term web growth continues to outpace the trailing tail of
connectivity in developing regions.

In this work we propose a novel way of thinking about caching in
constrained network conditions, called interactive caching. In in-
teractive caching the focus of the user experience is the interaction
with the cache when the connection is slow. To make caches inter-
active we maximize their utility in three ways: organize the cache
into topics for presentation to the user, optimize for user-perceived
latency, and unalias content.

Two observations motivate the idea of organizing and present-
ing cached contents. First, it has been observed that people in
small communities in developing regions tend to have similar inter-
ests [14,17,32,43]. Second, the asynchronous web browsing model
proposed in recent works [19,46] present an interesting opportunity
to interject additional functionality into the web interaction loop not
previously possible. Following these two observations, we propose
organizing the cache into topics so that it exposed opened up to the
user to be more easily explored. Just as conventional caching ex-
ploits the spatial and temporal locality across object requests to pre-
dict the usefulness of objects for future requests, interactive caching
similarly exploits topic locality to predict interesting themes for the
user. In this work we propose to identify topics by identifying pat-
terns from three streams of user request information: URL domain
names, search query terms, and text content on requested pages.

Optimizing for latency is a shift in focus from bandwidth as the
bottleneck being the assumption to latency or intermittency being
the bottleneck. Examples of this include latency aware caching
metrics and DNS caching. Unaliasing content follows from the ob-
servation that when a user requests a specific web page indicated by
a hyperlink and that page does not exist in the cache, it is possible
that the information the user cares about is actually available on a
cached page. We should help users find that information, whether
it is through search or alternate pages.

Interactive caching improves both system level cache performance
and user perceived performance. From an end-user perspective in-

1

teractive caching aims to provide three direct benefits: (a) Users are
presented with an organized view of trending topics in the cache to
help them discover its contents; (b) Users experience faster page
loads overall because the cache is optimized for latency; (c) Users
are given suggestions for similar pages when a specific hyperlinked
URL is not in the cache, which streamlines browsing.

This paper is organized as follows: First, in Section 2, we mo-
tivate the need for further study of caching for developing regions
and discuss the limitations of existing solutions. In Section 3 we
describe the design of a interactive caching framework and explain
why organizing the cache, optimizing for latency, and unaliasing
content make sense. We then focus on cache topics and presen-
tation in Section 4; we describe the three types of topics that we
considered: domain, query, and content topics. In Section 5 and
Section 6 we discuss latency-centric caching ideas and unaliasing
content, respectively. In Section 7 we describe our implementa-
tion and in Section 8 we demonstrate the potential of topics as the
organizational basis for presentation using a trace-driven analysis
from four real-world web logs gathered from different web cache
deployments. Finally, we discuss related work in Section 9 and
conclude in Section 10.

2. MOTIVATION
To motivate the need for a new caching abstraction for networks

in developing regions, we outline two fundamental trends pertain-
ing to the rapid growth in the complexity of web pages as compared
to the relatively slow growth of connectivity. We then summarize
the various problems with web browsing and discuss why conven-
tional solutions are not sufficient.

2.1 Web Growth vs Connectivity
Web pages have significantly grown in size over the years and

have out-paced the growth of connectivity in many parts of the
developing world. In addition, an average web page has also in-
creased considerably in complexity with a large number of objects
assembled from different domains. Information gathered from sev-
eral sources [3,6,12,23] indicating a 30− 50 fold increase of these
metrics in the past decade.

In contrast, connectivity has not grown at the same rate in the
developing world, and growth has been non-uniform across coun-
tries and regions. Global dialup and broadband penetration growth
in developing regions is isolated to a select few countries in each
continent [1, 7]. Broadband penetration in developing countries is
only 4.4 subscriptions per 100 people compared to 24.6 in devel-
oped countries in 2010; Africa, in particular has penetration rates
of less than 1% [7]. Furthermore, affordable connectivity in these
countries is typically limited to high-density urban areas. This mis-
match between web growth and available connectivity is the pri-
mary cause for poor web performance in developing regions. Based
on these trends, we believe that waiting for connectivity to catch up
with web growth world-wide is not an option.

Increasing web page complexity is a problem that plagues not
only slow network connections, but fast networks as well. When
loading a single page causes subsequent requests for many assets
from multiple servers performance generally degrades. Protocol
improvements such as Google’s SPDY attempt to address some of
these issues for already fast networks [5], but in slower networks
performance degradation is much more pronounced and SPDY’s
optimizations do not focus on the these network conditions.

Figure 1 illustrates the requests that are required for loading a
typical webpage (“yelp.com”). We requested this page from a 3G
connection in Accra, the capital of Ghana (August 2012). The DNS
wait time is in blue, server response wait time in purple, and the

Figure 1: Waterfall chart of object requests for rendering the re-
quest to “yelp.com” from a 3G connection in Accra, Ghana (Au-
gust 2012). DNS wait time is in blue, server response wait time in
purple, and reception of data is in gray. The main performance bot-
tlenecks are the latency associated with DNS requests for multiple
domains and responses from many servers.

transfer of data is in gray. We observe that the single initial page
request resulted in 78 objects being downloaded from 11 separate
domains requiring as many DNS requests. The total page load time
is 25.66s. We can also see how despite the optimizations of multi-
ple TCP connections opened by the browser and HTTP pipelining,
the performance bottleneck in this scenario is actually DNS resolu-
tion latency and TCP handshakes.

2.2 Limitations of Existing Solutions
Beyond the evolution of the web, the problems surrounding web

access typically have to do with a lack of consideration by the main-
stream internetworking community of the differences in the net-
working in these under-resourced regions. Unfortunately, what are
conventionally the corner cases are the common case for the next
billion internet users. In the previous example, web optimizations
such as parallel TCP connections at the application layer, and TCP
pipelining in the HTTP protocol are well intentioned, but illustrate
how optimizations for high bandwidth low latency networks are
not universally effective. We briefly outline why the application of
some of straightforward existing ideas to this problem are insuffi-
cient.

Why not improve network connectivity? The first question
that may arise is why not focus on improving network connectiv-
ity? Networks in developing regions suffer from numerous techni-
cal challenges ranging from power quality issues to poor connec-
tivity to low bandwidth [11]. Improving connectivity is the most
direct approach [42, 45], but such solutions often may not feasible
in all contexts due to basic economics and a variety of other fac-
tors. Mobile data connectivity has penetrated in many developing
regions, but are limited by relatively high prices. Even universities
that have high bandwidth connectivity often experience extremely
high levels of sharing [17]. Finally, the fact that content servers
are simply very far away geographically contributes to the latency
problem.

Why not conventional caching? One conventional optimiza-
tion essential to web performance is web caching. Unfortunately,
standard web cache deployments in many developing regions typi-
cally yield very poor cache hit rates ranging from 15% to 30% [30].
In slow networks even a few cache misses can result in long la-

2

tencies. The existing caching standard [25] was simply not de-
signed for or suitable for complex web services on networks with
low bandwidths, extremely high latencies or periods of complete
disconnectivity.

Caching in the context of developing regions: The body of
literature regarding web caching is extensive, but caching mecha-
nisms for developing regions have been explored only to a limited
extent [9,14,32,34]. As web content becomes more fragmented and
dynamic objects are commonplace, stale and nocache objects are
already being cached by aggressive solutions to trade-off content
freshness for availability. Isaacman and Martonosi’s C-LINK de-
ployment in 2009 showed that the cache hit rate at a rural school in
Nicaragua connected to the Internet by a mechanical backhaul was
only approximately 20% [33]. However, if collaborative caching
were included for these small communities, the cache hit rate dra-
matically rose to 80%. In 2010, Chen found (ELF dataset) that
the cache hit rate at an urban school in India was only approxi-
mately 31.1% if nocache and stale pages were included [14]. Other
caching works have focused on low cost hardware or specific net-
work configurations [9, 31, 32].

3. INTERACTIVE CACHING OVERVIEW
The basic goal of interactive caching, as the term suggests, is to

provide a usable and interactive web experience for users behind
slow and intermittent networks by enabling users to interact with a
large cache. The physical setup of our interactive caching system
is a single or a collection of end-users behind a slow network that
all share a common proxy cache located near the edge of the slow
network link. Our interactive caching system is built around four
key ideas:

A New Presentation Layer: All users in the system are aware
that they are behind a slow or intermittent network and explic-
itly use an intermittency-aware asynchronous web browsing sys-
tem which is aware of where the interactive cache resides. When
the network is too slow, intermittent, or unavailable, the interactive
cache can explicitly serve content to the users. The logical com-
ponents of an interactive cache could all run on a single physical
machine.

Organizing the Cache based on Topics: To enable users to
easily search and navigate the cached contents, interactive caching
organizes caches based on the abstract concept of topics, which
simply represents a group of related pages with a common theme.
We discuss different types of topics that our current system sup-
ports. Users can search for specific topics or be made explicitly
aware of the trending topics which in turn increases their potential
interaction with the cache.

Optimizing for Latency: Since we operate in environments
where latency is often the primary bottleneck, interactive caching
supports specific optimizations that are tailored to optimize for la-
tency. Given the observation of high DNS response times in these
network conditions, interactive caching supports DNS caching. In
addition, we introduce a specific latency-sensitive caching mech-
anism which allows cache eviction and management at different
granularities (pages, topics, domains) using latency weighted val-
ues.

Unaliasing Content: Under high page load time conditions,
when users are requesting specific pages not present in the cache,
interactive caching provides a simple way for users to identify alter-
native cached pages that might provide similar content or in some
cases, identical content. Instead of relying solely on existing hy-
perlinks for navigation, interactive caching uses an unaliasing con-

tent mechanism that allows potentially interchangeable content to
be presented as possible alternatives when the original hyperlinked

pages do not exist in the cache.
In the next sections, we will describe these design ideas in greater

detail.

4. TOPICS AND PRESENTATION
One key challenge in interactive caching is identifying topics

within a cache. Once the topics are identified, then the interactive
cache can present them to the user in an organized fashion.

Conceptually, a topic is simply a set of pages that describes an
interest of users. In our interactive caching system topics of interest
are expressed in three different ways: (a) Domain; (b) Query; (c)
Content. Domain topics cluster all requests of the same domain and
sub-domains together. This is useful when users are interested in
all web pages authored by the same content creator. Query topics
are extracted as top search terms across users. This is designed to
aggregate trending search topics. Content topics are extracted by
analyzing actual content from the cached pages.

In our system each topic consists of: (a) name of the topic, (b)
a set of pages belonging to a topic, and (c) value of the topic. The
name of the topic is simply a label for the topic used for identifica-
tion and . The description may be automatically extracted from the
pages belonging to the topic. Our system automatically generates
topics from three sources of information: requested URLs, issued
search queries, and text content from downloaded pages. The set
of pages that belong to a topic are extracted automatically and are
used by the cache to display pages belonging to a topic during nav-
igation. The value of a topic is used by the cache to prioritize the
most important topics for presentation to the user.

4.1 Domain Topics
Domain topics aggregate different requests to the same domain.

A good example of a useful domain topic is a popular news site.
Different users may be interested in different articles in the same
news site; grouping all such requests as one domain-topic allows
users to get a better idea of the content from the news site that
has already been cached. To identify domain topics, the system
examines the URL patterns that occur to identify domains and sub-
domains appearing frequently enough in the cache.

The domain-topic extraction engine groups web page requests
for a given domain into a hierarchical tree of buckets. At the top
of the tree is the domain and branching out from these are the sub-
domains, and sub-directories within the domains. The leaves of this
tree are specific URLs within the domain. Associated with each
bucket is a value measure Vb per domain/sub-domain. The leaves
of the tree are individual pages with a value measure as a direct
function of the time spent fetching the page’s objects. The value of
any node in the tree is the sum of all the leaves in the sub-tree rooted
at the node. An example of a tree structure for a domain topic is
shown in Figure 2(a). A domain topic is considered “identified”
once a threshold, T , of requests are made that belong to the topic.
Once a topic is identified, it is eligible for presentation.

4.2 Search Topics
Search topics are constructed from user search sessions. The sys-

tem tracks individual search query requests from the users and split
requests into search sessions based on queries to search engines,
query overlap, and time of request. On a per-client basis, if a query
is made that overlaps with a previous query made within the last
time threshold, S seconds, then the query is considered as part of
the same search session. Otherwise, a new search session is cre-
ated. All requests made while a search session is active belong to
the current search session. The union of all search terms in a search
session represents a “bag of search words” that can potentially be

3

Figure 2: Example values for (a) domain topics, (b) search topics, and (c) content topics. Values are hierarchical and cumulative. Dark blue
topics are displayed names, light blue highlights indicate web links for display, and object values are in green.

used as the topic name label.
In our system, we take a simple and scalable approach to define

search topics without involving any complicated computational lin-
guistic steps to understand the meaning and relationships across
words. We use a simple dictionary to remove all commonly oc-
curring words from the list of search words and extract a list of
’query-like’ phrases from the user requests in a search session. A
search session is also associated with the individual sites visited by
the user during the session. Thus, each search session can be repre-
sented as a 2-level tree comprising of a filtered collection of search
words at the root and the websites visited in the session along with
their individual value measures. The value of the root is the sum of
the values of the leaf nodes.

We use two simple rules for merging search topic trees. If the
list of words in one search topic tree exactly overlap with another
search topic tree, we can merge the two roots into a single node with
the combined values and join all the child nodes to the new root. If
two search topic trees partially overlap in the word set, then we can
merge the search trees by creating a new root node with the union
of the search terms of the individual search topics. An example
of such a merged search topic tree is shown in Figure 2(b). From
a user perspective, depending on the search queries, they can be
shown the search topic tree as a means of navigating relevant pages
corresponding to a search topic.

4.3 Content Topics
The output of content topics, as with search topics, is a set of

descriptions that convey the areas of interest that users spend the
most time on. However, given the time and resource constraints
of the cache system, performing a clustering calculation on the full
set of document content is impractical. This restriction implies a
need to drastically reduce the set of documents considered and the
feature set used. We use standard information retrieval techniques
to extract the commonly occurring features (1-gram or 2-gram key-
words) across different documents. Clustering the reduced set of
features is straightforward and can be performed using any stan-

dard clustering algorithm. An example of a content topic tree is
shown in Figure 2(c).

4.4 Presentation and User Interface

Figure 3: Screenshot of the web browser interacting with the in-
termittent proxy. The main browsing pane on the homepage (red)
contains topics and is augmented with a search box at the top (or-
ange) and a request queue at the bottom (yellow). The top right
corner indicates the Internet connection status (currently off).

Interactive caching techniques may be combined and are syn-
ergistic with recently developed asynchronous web browsing sys-
tems [19, 46]. We borrow liberally from previous works on asyn-
chronous browsing interfaces and layouts. In such systems, re-
quests by clients are served directly by the proxy. These asyn-
chronous browsing proxies already expose the cache contents to
users via two simple mechanisms: offline search and browsing. Of-
fline search is when the user decides to search through the cached
web pages when the network is too slow. The system will return
a list of results and the user will then click on links to navigate

4

through the cached pages. It is also possible for the user to directly
specify URLs to request those pages directly.

In interactive caching, we increase the level of interaction to the
cache and expose more of the cached contents by exporting an or-
ganized view of the cache to the presentation layer. In real-time,
the cached pages are gathered into topics and presented to the user
as links for navigation. Figure 3 shows a screenshot of an exam-
ple asynchronous browsing interface [37]. The search box and
request queue are respectively outlined orange and yellow. The
main browsing pane (outlined in red) is typically pre-populated
with static cached content categories, the system’s homepage, or
tools (e.g. dictionary/wikipedia/etc.). Rather than pre-populating
the cached contents statically, we use this space to present the inter-
active cache’s real-time trending topics. We defer a more detailed
study into the design of user interfaces and integration of interactive
caching to future work.

5. OPTIMIZING FOR LATENCY
There are many ways to make latency the focus of web optimiza-

tions. We briefly introduce two of these possibilities at the caching
level that can make a big difference in web performance.

5.1 Latency-sensitive Caching
To make web cache policy decisions we need to place a cost or

value on each page or object as a measure of how costly it is to store
or how valuable it is to users. Conventionally, cost and value are
typically considered synonymous and Least Recently Used (LRU)
or similar policies that may take into account object size are com-
monly used in web cache eviction policies. In interactive caching
we not only have to perform eviction, but also presentation. We
observe that object size is not a particularly good measure of how
valuable an object is to the user. In light of these considerations, we
explicitly decouple the eviction policy from presentation and the
cost from value. In other words, a conventional cost is associated
with all web objects stored in the cache and these costs are used in
the cache eviction policy, e.g. size adjusted LRU. Separately, the
value function, latency adjusted LRU, is used in the presentation
policy of the cache.

Since the emphasis of presentation (interest) is different from
cache eviction (storage) we create a new measure for making de-
cisions about prioritizing pages for presentation. The conventional
measure of the cost of an object in the cache is the number of times
it was requested or the size of the object. In a high bandwidth net-
work scenario, this reflects the optimal behavior: smaller objects
are downloaded faster and therefore the time spent transferring on
a cache miss would be minimized. However, for constrained net-
works, the relationship between object size and transfer time fluctu-
ates significantly between different network conditions as observed
earlier. For example, a single large object may download faster than
several smaller objects due to connection setup latency, latency to
particular servers, or extreme bandwidth contention. Across these
disparate network scenarios, object size is no longer a consistent
and accurate measure of the time spent transferring. instead, the
time spent downloading an object is better implicit measure of the
user’s valuation of the object, because the user was willing to wait
for it to download.

Measuring the value of objects is straightforward - we simply
record the amount of time spent fetching a resource; this stored
’time to fetch’ is the value for the resource. This value function
explicitly takes into account the reality of the web browsing expe-
rience for users in high-latency environments where the value of
fetching N bytes may vary radically. When objects are present in
the cache the value function is nearly zero. Therefore, the value of

most objects is the sum of the initial time to download the object
plus many tiny access times caused by subsequent requests result-
ing in cache hits.

In normal situations where request latencies are relatively sta-
ble, caching decisions made based on object size reflect accurately
the resources used for retrieving and storing the object. However,
in constrained situations where this is often not true, the estimated
value of an object will be extremely inaccurate. We use the sce-
nario in a previous work, Event Logger for Firefox (ELF) [14], to
illustrate this problem. ELF is a Firefox extension that optimizes
web page load times using aggressive caching (of somewhat stale
contents) and prefetching while logging all requests. The ELF trace
data was collected from a shared school network in peri-urban In-
dia where, relative to intermittent or high latency networks, the net-
work was “good”. The authors found that by aggressively optimiz-
ing for performance, page load times could be reduced by a factor
of 2.8x. We used the same traces to generate Figure 4, which shows
the variation in user-perceived latency for downloaded (cached and
uncached) objects of a given size. We observe that for this slightly
constrained shared network connection, the variation for a given
object size is up to 2 orders of magnitude for uncached objects
around 100KB in size; in other words, basing caching decisions on
object size would fail to account for nearly 2 orders of magnitude
in user-perceived latency similar sized objects! This disparity is
further magnified for web pages that consist of around 30 separate
objects. This is surprising given that ELF was able to achieve sig-
nificant speedups already, and suggests that further gains are possi-
ble by taking latency into account.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

100 B 1 KB 10 KB 100 KB 1 MB 10 MB 100 MB

R
ec

or
de

d
D

ow
nl

oa
d

T
im

e
(s

ec
on

ds
)

Object Size

Average
10th percentile
90th percentile

Minimum
Maximum

Figure 4: Per-object download time from ELF log bucketed by size
showing values for average, min, max, 10th percentile, and 90th
percentile.

5.2 DNS Caching
As we observed in Section 2, DNS query lookups can dominate

the overall web page request time, and adding a DNS cache could
help address this problem. To assess how much potential bene-
fit there is in deploying DNS caching we perform some cursory
experiments from behind a broadband Wifi connection in Ghana.
In August 2012 we downloaded Alexa’s top 100 web pages for
Ghana using Firefox v12 over a 10Mbps broadband connection
while recording the traffic in the HTTP Archive (HAR) format [29].
The HAR file format does not preserve dependencies among web
page assets so it is not possible to automatically calculate how well
DNS caching would perform. To address this, we manually cal-
culated the dependency tree for the first few bottleneck assets of
a webpage requested to render the complete page. This is a con-

5

servative estimate since further dependencies are possible, but as
a lower bound we found that in our dataset that the DNS request
time was responsible for up to 72.86% of the page load time. This
means that as long as the DNS mappings for a page are cached,
subsequent requests for the page would load nearly 4 times faster
in this environment.

Despite our conservative accounting method, DNS caching has
obvious potential for dramatically improving page load time on
even broadband networks where latencies are relatively high. As
a part of our interactive cache we would simply maintain a DNS
cache that stores the DNS to IP mappings for all sites accessed.
The entries in this cache are associated with a relatively long life-
time to prevent premature expiration. Further optimizations such
as DNS entry eviction policy, DNS prefetching, request scheduling
based on object dependencies are possible, but are not the focus of
this work.

6. UNALIASING CONTENT
In a well-connected network when a web page is requested that

results in a cache miss the browser automatically fetches the page
from the content server on the Internet; since the connection is fast,
this process is transparent and seamless. Behind a slow network
a cache miss is more frustrating to the user since it takes a longer
time to fetch the missing page and associated resources. If the con-
nection is completely down, then the browser returns error since it
cannot download the missing page and the user has no way to make
progress. The key idea of unaliasing content is that when a user re-
quests a web page, the information contained in the page could be
found in a different page in the cache. Therefore, in such scenarios
when the connection is down or even just very slow, requests that
would result in cache misses are instead diverted to existing pages
in the cache that contain the same information.

As with the idea of latency aware optimizations, there are many
different ways to unalias content. In fact, existing asynchronous
systems already employ one method for unaliasing content by al-
lowing users to search the cache contents. This allows users to
find the information that they are focused on rather than basing the
cache functionality on an entirely binary URL-centric concept of
cache hits or misses. Here, we suggest a substantially more aggres-
sive mechanism to unalias content: missing link suggestions.

Missing link suggestions are just what the name would suggest;
when links are missing from the cache, the user is presented with
other pages that could potentially satisfy the same information needs
as the linked page rather than waiting for the network to be avail-
able. Again, missing link suggestions could be implemented in dif-
ferent ways, but with two basic requirements. First, at the informa-
tion retrieval level, the algorithm used to suggest hyperlinks should
be accurate. Second, at the user interface level, how the links are
suggested to the user is critical to the user experience. Here, we
briefly discuss a proof of concept of the algorithmic aspect of the
information retrieval problem and leave the other aspects for future
work.

To show that missing link retrieval is possible, we crawl the web
for 120 search topics for a total of approximately 60,000 pages. We
crawled our corpus of pages during May, 2013 using some of the
topics from previous work on offline web portals [16]. Using this
corpus, we conducted some simple retrieval experiments to see the
accuracy with which we could retrieve pages in the corpus based
solely on the information from the referrer page. Our experiment
is as follows: First, we index all 60,000 pages in our corpus. Then,
we find all of the hyperlinks where the linked page exists in our to-
tal corpus (210 links). Using the referrer page of these hyperlinks
we check to see whether we are able to retrieve the linked page

Table 1: Simple retrieval model performance on missing link sug-
gestions.

Retrieval Model P@1 P@10

TF-IDF 0.33 0.53

Language Model 0.40 0.60

BM25 0.38 0.58

GA 0.63 0.67

without using the URL to directly look up the page. We experiment
in this manner because if the actual page were able to be retrieved
with 100% accuracy, then our retrieval model has perfect perfor-
mance; therefore, for retrieval of pages that are actually missing,
our retrieval model would retrieve highly relevant pages.

We use three standard retrieval models in this first experiment:
TF-IDF, LM, and BM25. Due to space constraints we do not in-
clude the formulas for these retrieval models, more information
about these models can be found in [26]. Our results for 210 queries
(generated with the hyperlink anchor text on the referrer page) for
the three retrieval models are shown in Table 1. In the Table, P@1
and P@10 indicate the percentage of queries for which the correct
page appears at the first and within the top ten ranked positions,
respectively. We found that by using only the link anchor text and
URL on the referrer page for the search query, the effectiveness was
low, but still promising.

Following this first experiment, we then combined different fea-
tures (e.g. Anchor Text, URL, context, contents of document con-
taining missing link) and used a using genetic programming algo-
rithm for analyzing how far feature combination could improve the
performance. Out of 210 queries, we first randomly picked 50 as
training used the rest for testing. We ran the genetic programming
algorithm up to 100 generations with 50 individuals per genera-
tion. After training, we tested the effectiveness on evolved retrieval
model on test queries. We found that this algorithm achieved ac-
curacy of 63% for P@1 and 67% for P@10. We believe that even
more refined algorithms and features will yield better results, but
these numbers imply that approximately 2/3 of the time our miss-
ing link suggestion algorithm would suggest a useful link if it exists
in the cache.

7. IMPLEMENTATION
From the system organization perspective, interactive caching

may either completely subsume conventional caching or be ap-
plied as a layer on top of conventional caching. In our imple-
mentation, we chose the latter design for a cleaner separation be-
tween cache organization and object-level management so as to
leave cache eviction largely unchanged.

For this work, we implemented each of the caching mechanisms
designed in the previous sections. Our interactive cache is imple-
mented in C# on top of an existing asynchronous browsing sys-
tem [19]. We chose this system as a platform because we had
previous experience with it and it installs easily on Windows ma-
chines. Our additions to the code primarily were to include the
DNS caching functionality, missing link suggestions, and topic iden-
tification and presentation using our new value metric.

Adding DNS caching was relatively simple since Windows al-
ready has a DNS resolver the .NET frameworks use. We modified
the installer to change the Windows registry to increase the size of
the cache and extend the default expiration time. We opted for this
most basic implementation since it was easy to make these changes
without delving too deeply into the resolver implementation itself.

6

We expect that adding prefetching and more intelligent expiration
of the cache would also be possible, but more involved.

For missing link suggestions we run our genetic programming
algorithm described in Section 3 implemented in 3000 lines of C
code including query expansion algorithms to boost performance.
Identifying missing links to make suggestions for is trivial since
the cache can query itself for all URLs. Our missing link sugges-
tion algorithm is fully integrated into our interactive cache using
Javascript injection into the served pages. We considered an alter-
native implementation using a browser extension that queries our
cache for the suggestions, but this would necessitate installation of
the extension onto all client browsers.

Our cache organization and presentation layer was implemented
using in C and C# with dependencies on several open source li-
braries. The domain and search topic identification routines are
approximately 2000 lines of C# code. The content topic extraction
was implemented by first collecting all files with text/html MIME
type and removing HTML tags using the C# HTMLAgilityPack
package [28]. Then, the doc2mat [22] utility was used to convert to-
kens into the cluto format. Cluto [20], a clustering toolkit, was used
to cluster documents into K = 10 clusters for display. For a small
cache size of 66MB with 1366 text files. Clustering takes about
40s the first time and about 10s for consecutive calls. In our imple-
mentation clustering takes around 2 hours for large caches (150GB)
and we are working to improve the clustering performance. We run
clustering currently once per hour by default, but this parameter
may be tuned for a desirable tradeoff between system performance
and responsiveness to changes in the cache. Finally, we modified
the user interface with hooks that request our intermittent cache
for topics to display the most high value topics using a basic two
column grid layout (Figure 3).

8. EVALUATION
In this section, we evaluate the effectiveness of our interactive

caching layer using real-world access patterns of web browsing re-
quests from four developing region deployments. We emphasize
evaluation of functionality across different contexts to show how
our ideas can improve caching. Our system, by design, signifi-
cantly alters user behavior and access patterns. We therefore focus
on independent evaluation of the individual mechanisms of our sys-
tem rather than a full system evaluation.

Traditionally, cache hit rate has naturally been used as the stan-
dard system level metric for evaluating web cache performance. As
web content becomes more fragmented and dynamic, cache hit rate
declines in its explanatory value and other metrics may be more
useful to show system performance (e.g. load time). Interactive
caching also expands functionality, changes user behavior, and re-
laxes the binary concept of a cache hit. Since the goal of organiz-
ing the cache is topic identification, we specifically use topic level
rather than system level metrics in our evaluation.

We define a new metric “topic hit rate” to capture the idea of hav-
ing a page in the cache that satisfies a request to some degree. A
request results in a topic hit if there already exists a topic identified
and cached by our system. For example, if a user looks for informa-
tion about “Steve Jobs” and finds a link to his biography that is not
cached, but then searches for or is offered a similar page with the
desired information and views that page instead, then the request
would be a topic hit for the search topic “Steve Jobs”. While the
information in the cache may not be exactly what the user wanted,
if it was returned by the local search it should be at least somewhat
relevant and facilitate further browsing. By design and by defini-
tion, this metric is more relaxed than cache hit rate.

8.1 Web Traces
Table 2 outlines the properties of the datasets, and the environ-

ments from which they were gathered. The datasets are varied and
have many interesting properties beyond what we describe here for
comparison. We only highlight the relevant differences as they re-
late to our results.

8.2 Identifying Useful Topics
To evaluate whether our system is able to find useful topics we

use a web trace gathered from a computer lab at a secondary school
near Nairobi, Kenya using a CIP system [16] via a mechanical
backhaul. Overall, this trace contains over 100000 requests and
over 1400 search queries gathered over a period of four months.
The usage of the cache is bursty due to multiple scheduling and
classroom constraints, only 41 days out of 160 have any activity.
Days with no activity are omitted. Since this trace does not contain
the actual object payloads we are not able to generate the content
topics. On most days only a handful of “big” topics dominate the
set of requests. Table 3 shows an example of the topics our system
identified and their value on an arbitrary day. Given that the com-
puter lab was being used to teach Information Technology courses,
these topics appear to be relevant to the topics covered in class.

8.3 Topic Recurrence and Stability
We next attempt to understand the utility of topics over time:

“how long does it take to detect a topic, and how useful is the topic
over time?” Figure 5 shows a semi-log plot of the cumulative num-
ber of requests over time (Note: time here is in hours after the first
request belonging to the topic) for a few of the top topics by topic
coverage. The threshold T = 3 is shown for reference (in yellow).
Again, we make some observations. First, we observe that most
of the domain topics are identified within the first 24 hours. Sec-
ond, the identified topics recur regularly over time. This figure also
shows that despite the requests being bursty over short timescales
of hours, topic stability is fairly regular across days. The long quiet
periods are due to intermittent use.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 1 10 100 1000 10000

C
um

ul
at

iv
e

N
um

be
r

of
 R

eq
ue

st
s

Hours after First Request

www.edrawsoft.com
www.typepad.com

pdfcast.org
www.answerbag.com

www.helium.com
Num Requests T = 3

Figure 5: Semi-log plot of domain topic trends over time. Note that
the x-axis is the number of hours after the first request for a topic
and therefore not all topics extend to the end of the graph.

8.4 Topic Coverage and Value Function
Figure 6 illustrates the topic hit rate of user requests as the num-

ber of domain topics varies. The top N topics (x-axis) are chosen
by the highest value. We constructed these topics from 1432 search
queries, and find that after 100 search topics the topic hit rate is

7

Table 2: Descriptions of web traces used for Figure 8

Dataset # of Re-
quests

Time Taken Context

ELF 263,979 17 day sample, 2010 Peri-urban elementary school in Bangalore, India, stu-
dents and teachers

CIP 110,493 Oct 2010 - Feb 2011 Rural secondary school near Nairobi Kenya, mechani-
cal backhaul, students and teachers

Kelsa+ 169,819 1 year, 2009 Office building Bangalore India, used by unskilled of-
fice workers, good connection

TEK 64,786 7 year period, 2002 -
2009

Solomon Islands, slow/intermittent connection, local
farmers

Table 3: Example topics along with their values according to our
value function.

Topic Value

system development methodology 19559

operating system development 14867

computer types 4139

www.network-tutorial.com 201

msdn.microsoft.com 190

www.cisco.com 183

www.electronicsreviewsnow.com 114

imgs.xkcd.com 73

justin bieber 9

hoax virus 5

greater than 66%. Also, as few as 500 domain topics are sufficient
to cover 53% of requests over a period of 4 months.

 0

 20

 40

 60

 80

 100

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

T
op

ic
 H

it
R

at
e

Number of Topics

Domain Topic Coverage CIP
Search Topic Coverage CIP

Figure 6: Topic hit rate of domain and search topics across all re-
quested objects.

8.5 Caching Sensitivity Analysis
The previous topic coverage rates were measured using web re-

quests for all objects in our trace. However, as we discussed in Sec-
tion 2, modern web pages generally require resources from many
different domains to render. Since the CIP trace contains infor-
mation that allows us to differentiate between the user requested
page and all dependent pages (i.e. embedded objects, scripted re-
quests, and active content), we filter these out to simulate the per-
formance if all caching standards are ignored and our cache aggres-
sively caches all objects. An alternate way of thinking about this

experiment is that it gives an idea of the cache performance per
page rather than per object. We also conduct a sensitivity analysis
on some of the parameters in our implementation to show that our
system does not require significant tuning.

Figure 7 shows the results of this experiment using the CIP trace.
We make three observations: First, we observe that our system
achieves significantly higher topic coverage than counting individ-
ual objects separately and strictly obeying HTTP/1.1 caching stan-
dard as compared to Figure 6. Second, we require only few page
topics to achieve this high page topic coverage. Approximately
40 completely cached pages will satisfy 65% of requests over a 4
month period. Finally, the resultant topic hit rate is insensitive to
choice of the threshold T other than the relatively low gain tail of
the graph is truncated.

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100 120 140 160

T
op

ic
 H

it
R

at
e

Number of Topics

Threshold T=2
Threshold T=3
Threshold T=4

Figure 7: Sensitivity analysis of parameter T (number of user re-
quests before accepting a topic) of topic hit rate of domain topics
across total user requests.

We also experimented with the sensitivity of search topics on the
threshold, S, which is the maximum time between the last search
query within which a request will be considered as a part of that
query’s search session. We found that between 15 and 60 minutes,
there was very little increase in search topic coverage rate. We
found experimentally that the duration of 15 minutes is reasonable
for capturing most real user search sessions.

8.6 Generalizability to Other Contexts
It is promising to show that topics are potentially beneficial for

one specific context, but it is significantly more compelling if our
system works across contexts. We evaluate our system using each
of the web traces from the separate pilot deployments (Table 2)
in developing regions across three very different geographical and
situational contexts to see whether our results generalize. In this

8

comparative evaluation, we only compare domain topics here be-
cause the page content itself was not available, and not all logs
contained enough state information to extract search topics from
them. Furthermore, there were very few search queries in the TEK
and Kelsa+ logs with which to do a comparison.

 0

 20

 40

 60

 80

 100

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

T
op

ic
 H

it
R

at
e

Number of Topics

CIP
Kelsa+

TEK
ELF

Figure 8: Per-object topic hit rate across four datasets: CIP, Kelsa+,
TEK, ELF.

Figure 8 shows the request coverage for a given number of top-
ics across the four datasets. We observe that we actually attain
better coverage per topic for the ELF and Kelsa+ traces than our
results with the CIP trace. It is important to note that these results
are far from a best-case scenario; ideally, the epoch length, when
topics are extracted and topic hit rate measured would match the
network characteristics. For example, in the case of a low band-
width connection, topics should be extracted at least once per hour.
For mechanical backhauls, topic extraction should occur at at least
once per round trip. This would lead to an increase in the short-
term topic hit rates. We also found that the request recurrence of
the domain topics of each of the traces is qualitatively similar to the
CIP trace results in Figure 5 and the time between topic recurrence
generally scales with the rate of requests over time.

9. RELATED WORK
There is a large body of literature about web caching in general.

In regards to constrained networks and improving the availability
of content, Coda introduced idea of disconnected hoarding of often
used content for offline use [35]. After the observation that web
requests may be modeled as a Zipf-like distribution of independent
requests, much of the early work on caching emphasized prediction
schemes for exploiting the temporal locality of page requests [10].
This included the design of caching hierarchies and models [47].
More recently, distributed or collaborative web caching systems
have been popular areas of research [1, 36]. The unaliasing aspect
of our work is the similar to value-based caching [44], which al-
lows matching of data chunks at sub-page granularities. Interactive
caching does matching at the per-page level granularity for missing
link suggestions, and the purpose is to redirect users rather than to
save bandwidth on redundant data.

As with hierarchical caching and collaborative caching, prefetch-
ing systems may be implemented in different places in a network.
Prefetching is complementary to, but independent from, interac-
tive caching. Web prefetching methods typically emphasize server-
side or server-assisted systems for increasing web server perfor-
mance or client latency [21,39,40]. These systems employ various
techniques such as probabilistic user modeling or popularity-based

prediction by partial match [39] to enhance prefetching accuracy.
Other works suggest prefetching between low-bandwidth clients
and proxies [24].

There are only a few works on caching for developing regions,
but they are otherwise unrelated to interactive caching both in terms
of goals and ideas. The C-LINK collaborative caching system im-
proves caching within a village by pooling resources across a set
of weak nodes and sharing resources [32, 33]. Recent work ex-
tends collaborative caching to support mobile devices [34]. Hash-
Cache introduced techniques for scaling up web caching for cheap
commodity laptops with limited memory [9]. In contrast to these
approaches, interactive caching is user centric and emphasizes re-
ductions in user-perceived latency, unaliasing content, and orga-
nizing existing cached contents for presentation. Other developing
region specific web optimizations besides caching focus on improv-
ing bandwidth utilization through various techniques [4, 15, 31].

The organization of topics in interactive caching is reminiscent
of automatically building an ontology. Ontologies of topics have
been in active use by Yahoo and AOL for many years, but slowly
lost popularity as search engines improved and Internet speeds in-
creased. More recently, the rising interest in semantic web has revi-
talized ontology based searching, particularly for domain specific
web portals or vertical search engines [41]. Interestingly, topics are
also popularly used in SMS-based search engines, another type of
constrained search [2, 8, 18].

Time Equals Knowledge (TEK) [46] and RuralCafe [19] are web
browsing systems for challenged networks that enable web access
over poor network connections. These systems use an asynchronous
browsing model and allow for local search through the cache. The
cache organization and presentation aspects of interactive caching
are dependent on the asynchronous browsing model, but the idea of
interactive caching is not tied to a particular implementation.

10. CONCLUSION
In this paper we proposed a novel approach to caching in de-

veloping regions with slow networks, which we call interactive
caching. In our interactive caching model we maximize the util-
ity of web caches in three general ways: organize the cache into
topics and present these topics, optimize for latency, and unalias
content. We designed and implemented one possible instantiation
of these ideas and found several interesting results.

We showed how cache may be organized based on different kinds
of primary features (domains, search terms, text contents) and showed
how this organization can then be integrated into the presentation
of an asynchronous browsing system. Since we found that DNS
resolution times were a huge contributor to page load times our sys-
tem’s basic DNS caching could reduce page loads by up to 72.86%.
We observed that object size as a cost metric for cache eviction
could be replaced in some situations with a latency aware value
metric. We decoupled cost of eviction from value in presentation
and used our latency values to weight the cached contents for pre-
sentation; replacing this metric may more accurately reflect user
interest.

To unalias content beyond basic search and sifting through re-
sults, we implemented a proof of concept genetic algorithm for
missing link suggestions to assist with browsing while the net-
work was unusable. For our sample dataset our prototype algorithm
achieves up to 63% link suggestion accuracy. From our implemen-
tation we showed the potential of topics as a basis for presentation
through trace-based analysis from four intermittent or slow network
settings. Using trace-based analysis from diverse settings in devel-
oping regions we found that our interactive caching concepts are
applicable to a variety of contexts.

9

11. REFERENCES
[1] Akamai: State of the internet.

http://www.akamai.com/stateoftheinternet/.

[2] Google sms. http://www.google.com/sms.

[3] Let’s make the web faster - google code. http://code.google.
com/speed/articles/web-metrics.html.

[4] Loband. http://www.loband.org.

[5] Spdy.
http://www.chromium.org/spdy/spdy-whitepaper.

[6] Websiteoptimization.com.
http://www.websiteoptimization.com.

[7] The world in 2010: Ict facts and figures. http://www.itu.int/
ITU-D/ict/material/FactsFigures2010.pdf.

[8] Yahoo one search. http://mobile.yahoo.com/onesearch.

[9] A. Badam, K. Park, V. Pai, and L. Peterson. Hashcache: Cache
storage for the next billion. In Proceedings of the Sixth USENIX

symposium on Networked Systems Design and Implementation.
USENIX Association, 2009.

[10] L. Breslau, P. Cao, L. Fan, G. Phillips, and S. Shenker. Web caching
and zipf-like distributions: Evidence and implications. In
INFOCOM’99. Eighteenth Annual Joint Conference of the IEEE

Computer and Communications Societies. Proceedings. IEEE, 1999.

[11] E. Brewer, M. Demmer, M. Ho, R. Honicky, J. Pal, M. Plauche, and
S. Surana. The challenges of technology research for developing
regions. Pervasive Computing, IEEE, 5(2):15–23, 2006.

[12] J. Charzinski. Traffic Properties, Client Side Cachability and CDN
Usage of Popular Web Sites. Measurement, Modelling, and

Evaluation of Computing Systems and Dependability and Fault

Tolerance, pages 136–150, 2010.

[13] J. Chen, S. Amershi, A. Dhananjay, and L. Subramanian. Comparing
web interaction models in developing regions. Proceedings of the

First ACM Symposium on Computing for Development, 2010.

[14] J. Chen, D. Hutchful, W. Thies, and L. Subramanian. Analyzing and
accelerating web access in a school in peri-urban india. Proceedings

of the 20th International Conference companion on World Wide Web,
2011.

[15] J. Chen, J. Iyengar, L. Subramanian, and B. Ford. Tcp behavior in
sub-packet regimes. In Proceedings of the ACM SIGMETRICS joint

international conference on Measurement and modeling of computer

systems, 2011.

[16] J. Chen, T. Karthik, and L. Subramanian. Contextual information
portals. Proceedings of AAAI Spring Symposium, 2010.

[17] J. Chen, R. Power, L. Subramanian, and J. Ledlie. Design and
implementation of contextual information portals. Proceedings of the

20th International Conference companion on World Wide Web, 2011.

[18] J. Chen, L. Subramanian, and E. Brewer. Sms-based web search for
low-end mobile devices. Proceedings of the International Conference

on Mobile Computing and Networking, 2010.

[19] J. Chen, L. Subramanian, and J. Li. Ruralcafe: web search in the
rural developing world. Proceedings of the 18th International

Conference on World Wide Web, 2009.

[20] Cluto. http://www.cluto.com.

[21] E. Cohen, B. Krishnamurthy, and J. Rexford. Improving end-to-end
performance of the web using server volumes and proxy filters. ACM

SIGCOMM Computer Communication Review, 28(4):241–253, 1998.

[22] doc2mat utility. http://glaros.dtc.umn.edu/gkhome/
cluto/cluto/download.

[23] J. Domčnech, A. Pont, J. Sahuquillo, and J. Gil. A user-focused
evaluation of web prefetching algorithms. Computer

Communications Review, 30(10):2213–2224, 2007.

[24] L. Fan, P. Cao, W. Lin, and Q. Jacobson. Web prefetching between
low-bandwidth clients and proxies: potential and performance.
Proceedings of the ACM SIGMETRICS International Conference on

Measurement and modeling of computer systems, 1999.

[25] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach,
and T. Berners-Lee. RFC 2616: Hypertext transfer
protocol–HTTP/1.1, June 1999. Status: Standards Track.

[26] K. Ganesan and C. Zhai. Opinion-based entity ranking. Information

Retrieval, 15(2):116–150, 2012.

[27] A. Ghodsi, T. Koponen, B. Raghavan, S. Shenker, A. Singla, and
J. Wilcox. Information-centric networking. In Proceedings of

HotNets, 2011.

[28] HTMLAgilityPack.
http://htmlagilitypack.codeplex.com/.

[29] HTTP Archive Format Specification.
https://dvcs.w3.org/hg/webperf/raw-file/tip/

specs/HAR/Overview.html.

[30] S. Ihm and V. Pai. Towards understanding modern web traffic. In
Proceedings of the 2011 ACM SIGCOMM conference on Internet

measurement conference, pages 295–312. ACM, 2011.

[31] S. Ihm, K. Park, and V. Pai. Wide-area network acceleration for the
developing world. In Proceedings of the 2010 USENIX Conference

on USENIX Annual Technical Conference, 2010.

[32] S. Isaacman and M. Martonosi. Potential for collaborative caching
and prefetching in largely-disconnected villages. Proceedings of the

ACM Workshop on Wireless Networks and Systems for Developing

Regions, 2008.

[33] S. Isaacman and M. Martonosi. The C-LINK System for
Collaborative Web Usage: A Real-World Deployment in Rural
Nicaragua. Proceedings of the ACM Workshop on Networked Systems

for Developing Regions, 2008.

[34] S. Isaacman and M. Martonosi. Low Infrastructure Methods to
Improve Internet Access for Mobile Users in Emerging Regions.
Proceedings of the 20th International Conference on World Wide

Web, 2011.

[35] J. Kistler and M. Satyanarayanan. Disconnected operation in the
coda file system. ACM Transactions on Computer Systems (TOCS),
10(1):3–25, 1992.

[36] R. Lancellotti, B. Ciciani, and M. Colajanni. A scalable architecture
for cooperative web caching. Web Engineering and Peer-to-Peer

Computing, pages 29–41, 2002.

[37] L. Li and J. Chen. Trotro: Web browsing and user interfaces in rural
ghana. In Proceedings of ICTD, 2013.

[38] S. Mubaraq, J. Hwang, D. Filippini, R. Moazzami, L. Subramanian,
and T. Du. Economic analysis of networking technologies for rural
developing regions. Workshop on Internet Economics, 2005.

[39] A. Nanopoulos, D. Katsaros, and Y. Manolopoulos. A data mining
algorithm for generalized web prefetching. IEEE Transactions on

Knowledge and Data Engineering, 15(5):1155–1169, 2003.

[40] T. Palpanas and A. Mendelzon. Web prefetching using partial match
prediction. In Proceedings of WCW, 1999.

[41] C. Patel, K. Supekar, Y. Lee, and E. Park. Ontokhoj: a semantic web
portal for ontology searching, ranking and classification. In
Proceedings of the 5th ACM international workshop on Web

information and data management, 2003.

[42] R. Patra, S. Nedevschi, S. Surana, A. Sheth, L. Subramanian, and
E. Brewer. Wildnet: Design and implementation of high performance
wifi based long distance networks. In Proceedings of the Fifth

USENIX Symposium on Networked Systems Design and

Implementation. USENIX Association, 2007.

[43] A. Ratan, S. Satpathy, L. Zia, K. Toyama, S. Blagsvedt, U. Pawar,
T. Subramaniam, and A. Ratan. Kelsa+: Digital Literacy for
Low-Income Office Workers. Proceedings of International

Conference on Information and Communication Technologies and

Development, 2009.

[44] S. Rhea, K. Liang, and E. Brewer. Value-based web caching.
Proceedings of the 12th International Conference on World Wide

Web, 2003.

[45] S. Surana, R. Patra, S. Nedevschi, M. Ramos, L. Subramanian,
Y. Ben-David, and E. Brewer. Beyond pilots: keeping rural wireless
networks alive. In Proceedings of the Fifth USENIX Symposium on

Networked Systems Design and Implementation. USENIX
Association, 2008.

[46] W. Thies, J. Prevost, T. Mahtab, G. Cuevas, S. Shakhshir, A. Artola,
B. Vo, Y. Litvak, S. Chan, S. Henderson, et al. Searching the world
Wide Web in low-connectivity communities. Proceedings of the 11th

International Conference on World Wide Web, 2002.

[47] J. Wang. A survey of web caching schemes for the internet. ACM

SIGCOMM Computer Communication Review, 29(5):36–46, 1999.

10

