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Abstract—This paper presents TrickleDNS, a decentral- resilience from failures and DoS attacks, their P2P approac
ized system for proactive dissemination of DNS data. Un- jnherently entails a large trusted computing base and makes
like prior solutions, which depend on the complete de- ynam yylnerable to data integrity attacks. To preserve data

loyment of DNSSEC standard to preserve data in- . . . . .
Feg)r/ity, TrickleDNS offers an incrementaIIE)/ deployable sdu- integrity, the above systems typically invoke DNSSEC, whic

tion with a probabilistic guarantee on data integrity that IS unfortunately not supported by most domains including to
becomes stronger as the adoption of DNSSEC increaseslevel domains despite many years of effort.

TrickleDNS provides resilience from data corruption attacks and This paper presents TrickleDNS, a hybrid system for proac-
denial of service attacks, including sybil attacks, usinghree key tive dissemination of DNS records. The primary objective

steps. First, TrickleDNS organizes participating namesevers into . . . . - .
a well-connected peer-to-peer Secure Network of Nameserge of TrickleDNS is security while providing incremental de-

(SNN) using two types of trust links: (a) strongly trusted saial ~Ployability. TrickleDNS organizes participating servergo
relationships across DNS servers (which exist today); (bJandom a distributed overlay network similar to existing P2P DNS

yet constrained weak trust links between DNS servers, which systems [18], [6], and proactively pushes DNS records in a
it introduces. The SNN allows nameservers in the network .q,nerative manner. However, TrickleDNS uses a decentral-

to reliably broadcast their public-keys to each other withait . . . .
relying on a centralized PKI. Second, TrickleDNSreliably binds ized security framework to protect against attacks instefad

domains to their authoritative name servers through independent relying on DNSSEC or a centralized PKI. Thus leaf domains
verification by multiple, randomly chosen peers within the SNN.  that are currently waiting for their parent domains to dgplo

Finally, TrickleDNS servers proactively disseminate self-certified DNSSEC can instead join the TrickleDNS network to securely
versions of DNS records to provide faster performance, beél'  yicceminate their data. TrickleDNS provides probabdise:-
availability, and improved security. . ) . . e .
curity guarantees for data integrity and DoS resilienceg; it
guarantees become incrementally stronger when augmeynted b
I. INTRODUCTION DNSSEC and as DNSSEC's deployment widens. TrickleDNS

The Domain Name System (DNS) forms a critical compdchieves these properties using the following mechanisms:
nent of the Internet infrastructure by providing the essént Limiting Sybil Identities: TrickleDNS leverages the Sybil-
service of host name to IP address resolution. Internetsuskimit protocol [25] to limit the number of sybil nodes
and providers of web-based services implicitly assume affd(logn) per attack edge) allowed to participate in the system.
rely on its correct operation, constant availability, aragtf Decentralized Key Distribution: TrickleDNS establishes a
response times. However, DNS as operated today is suseeptfiecure Nameserver Netwo(SNN)to facilitate fully decen-
to a wide range of attacks that can affect the integrity of @antralized public key distribution. The SNN allows Tricklel3N
lookup and the availability of the DNS. Most prominentlyto distribute public keys even in the presence of a sizeable
malicious elements can hijack domain traffic by intercegtimumber of compromised server&)(7-.) in an n server
DNS requests and propagating bogus address mappingd@iwork).
make the domain unavailable by launching DoS attacks. Reliable Name Binding: TrickleDNS binds domains to their
the past few years several massive DDoS attack have b@githoritative nameservers through independent veridiagty
launched on the root servers and specific domains to disraptltiple, randomly-chosen servers in the network.
name resolution. Proactive Dissemination of DNS Data:

To improve DNS availability and performance, several ré=inally, TrickleDNS servers push-out DNS records signed
search systems have proposed replacing or augmenting ligetheir own public keys on the secure network in order to
DNS hierarchical name resolution process with a coopeémprove lookup performance and availability.
ative, peer-to-peer approach. These proposals rely on peer
nodes as backup resolvers when the primary resolver fails
(CoDNS [16]), or employ a full-fledged peer-to-peer over-
lay (Chord [21] and Pastry [20]) for routing DNS queries The Domain Name System (DNS) is a general-
(DDNS [6], Overlook [23]), or advocate proactive dissemPurpose database for mapping names from a globally
ination of DNS records to servers organized in a peer-tghique name space to data resources associated with a
peer overlay (CoDoNS [18], Handley and Greenhalgh [9]ame. It uses a hierarchical name space partitioned into
Even though such decentralized systems based on proacfigg-overlapping regions calleclomains For example,

dissemination can provide faster resolution of queries af@P-bar.comis a sub-domain obar.com which in turn is a
sub-domain of the top-level domagom which is under the

Il. BACKGROUND AND RELATED WORK

UC Berkeley, Email: srirams@cs.berkeley.edu global root domain. Resources for names within a domain
New York University, Email: jchen@cs.nyu.edu d b N d lled horitati
Microsoft Research, Email: rama@microsoft.com are serve y a set of nodes calle tnethoritative name

New York University, Email: lakshmi@cs.nyu.edu servers In addition to network addresses for host names,



DNS resources, calletecords could also include names of
authoritative DNS servers, names of mail servers, or any %
small-sized data associated with the domain.
DNS uses a delegation based architecture for name resolu-
tion [13], [14]. A DNSresolverresolves names by following a
chain of authoritative servers, starting from the rootldiokd
by the top-level domain name servers, down to the servers of
the queried domain. For example, the namew.foo.bar.com
is resolved by following the authoritative severs of thegper
domainscom bar.com andfoo.bar.com DNS lookups could B cien Nameiiﬁiii?i",?f,‘"g"’ lnaﬁniiifie, Tuses
take a long time to follow the chain of servers in the hiergrch '
To improve the lookup latency, DNS resolvers aggressively
cache responses. Clients are typically configured with aneryg. 1. TrickleDNS Architecture: A cloud of TrickleDNS name-
more resolvers from their local domain, through which thesgrvers provide reliable DNS lookup service to clients whe
access DNS. interacting with legacy DNS servers in the background.
Several measurement studies have identified limitations in
the performance and reliability of DNS. The multi-step, it; . . o
. . . for high performance and failure resilience.
erative process for query resolution adds critical latetwy Presently, these proposals rely on DNSSEC [1], the preva-
DNS lookups [10], [24], while progapagation of updates iF ! '

delayed until records are expunged after the expiry of are nt security standard for DNS, to preserve data integrity.
termined lifetime (TTL), preventing fast relocation of giees NSSEC:DNSSEC uses public-key cryptography to generate

. ) . .certificates and verify authenticity. Each record belogdio
during emergencies. More criticallly, the low redundangy i . 2 . S
o . a domain has a certificate signed by the domain’s private key,
nameservers leads to limited tolerance of failures andldta ~ .~ . : - .
: ; while its public key is disseminated through DNS as a key
80% of domain names are known to be served by just two : .
: . record. In order to prove ownership of its name space, the
name servers, while 32% of domain names have all name

: . omain obtains a certificate from its parent domain, which
servers behind the same network gateway [15], [18]. Fmalé’onsists of its key record signed by the parent’s private ke
the hierarchical structure make the root and top-level dosna y ) y P b y

; . Essentially, DNSSEC associates each domain with a chain of
a frequent target of denial of service attacks [4], [5]. o : ; .
tificates signed by the centralized root of its parentaiom
Several researchers have proposed to augment the D,

. S clients are seeded with the public key of the root domain
lookup process through alternative, complementary system : ; . . :
. o and can verify the integrity of records by following the ahai
that provide better performance and resilience.

Centralized Solutions: Deeganet al. [7] propose to serve of certificates.
: . . Unfortunately, the acceptance of DNSSEC has been remark-
the entire DNS data from a single, centrally-managed repos

tory [7]. While centrally managed systems can provide gooa ;y prmrbgcngoggf)e\g to%rltel\scle\z Sdsolgn g méog;?abgr?tl anr?]an

performance and availability just like the DNS root server§ vunt . upport ) quenty, Y
today, they still problematically require trust to be pldan omains that wish to secure itself are unable to use DNSSEC
a sinéle centralized entity unless their parent domains adopt DNSSEC. Proposals to use

Peer-to-Peer DNS SolutionsMany proposals use the advan_alternanve centralized certification authority such ag@RSL

: . . .. (PKIs) (Fetzer et al. [8]) suffer from similar limitations.
tages of a peer-to-peer system for improving failure resde,
make query resolution faster, and proactively propagate up
dates. For instance, CoDNS [16] is a client-driven solution
that uses a backup-set of resolvers from peer domains ifTrickleDNS is a cooperative peer-to-peer network of author
the primary resolvers from the local domain are slow dtative name servers of participating domains. A domain can
unavailable. It uses a weak form of security based on mgjorjbin TrickleDNS even if its parent is not a participant. Each
consensus provided by ConfiDNS [17] to alleviate the risk @farticipating nameserver, calledteusted nameservefTN),
being misled by a malicious or compromised peer resolverhas two types of trust links with other participating TNshviit

Other peer-to-peer solutions use full-fledged overlay nefrickleDNS. Collectively, these TNs form a distributiontne

works or Distributed Hash Tables (DHTS) for query resolutio work called theSecure Nameserver Network (SNRigure 1)
DDNS [6] implements legacy DNS functionalities on top offhe two types of trust links within the SNN form two logical
Chord [21], while Overlook [23] is a new name service layereetworks:
on top of the Pastry [20]. CoDoNS [18] provides low latenc$ocial trust network: Two TNs that have a
query resolution and update propagation through proactiye-established “social” relationship may establistsazial
analysis-driven caching on DHTs, complementing other bemust link between themselves through an out-of-band channel.
efits of DHTs. These systems spread the responsibility $6cial relationships between nameservers exist in thesgturr
serving a domain uniformly across participating serverd aibNS for various reasons. (a) Nameservers belonging to the
efficiently transfer this responsibility to other servensridg same administrative domain have a default trust relatipnsh
failures. Similarly, Handley et al. [9] propose an architee (b) All authoritative nameservers serving a domain have a
to proactively push DNS records using a peer-to-peer oyerlaust relationship between them. Since, some authoritativ
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nameservers are often chosen from different domains for IV. TRICKLEDNS DESIGN

improving failure resilience (for examplepmell.eduhas an In this section, we describe the details of the TrickleDNS
authoritative nameserver ts.rochester.eddomain [19]), the design.

resulting relationships form a more elaborate trust netywor

transitively [19]. (c) Finally, nameservers of a domain éav

implicit relationships with the nameservers of the paredt Admission Control

domain, which are trusted by default. TrickleDNS is boot-strapped with an initial set of name

The above social trust network helps to prevent a Iar&@rvers which gqt as bootstrap node§. i .
number malicious hosts from joining the TrickleDNS SNN, 1he authenticity of a new domain that wishes to join
TrickleDNS applies the SybilLimit protocol on the sociallICKIEDNS is validated using its social relationships twit
network to perform admission control on the set of accept@f'€" Participating domains. In the TrickleDNS networke th
TNs within TrickleDNS. The SybilLimit protocol guaranteed'€W domain's name servers have trusted links with name
that the number of Sybil nodes that get accepted into tREMVES of the related domains. TrickleDNS then invokes the

TrickleDNS network is bounded by O(log n) per attack edggybilLimit protocol to validate name servers in its network
SybilLimit is a completely decentralized protocol that en-

where n is the number of nodes (not including Sybil nodes » ’
and an attack edge is a social trust link between a comprdmif’(i’IeS any honest node V (called the verifier) to decide whethe
node and the network of honest nodes. or not to accept another node S (cal!ed the suspect). It &ssum
that the number of edges connecting the honest region (the
Reliable communication networkGiven that the social trust region containing all the honest nodes) and the sybil region
network may not form a densely connected graph, TrickleDNghe region containing all the sybil nodesjttack edgess
builds a more densely connected network for reliable corsmall (even though the number of sybil nodes could be
munication. TrickleDNS TNs use the reliable communicatiojuge) since social relationships between DNS domains requi
network to distribute their public keys (via multiple dis#)t human negotiations. While in the original SybilLimit protd
paths) and verify the authenticity of other TN's public keysvery node acts as its own verifier, in TrickleDNS only the
in a completely decentralized manner. Our reliable commyootstrap nodes are mandated to act as the verifier nodes in
nication protocol can tolerate up 0(n/logn) adversarial the protocol and maintain consistency via majority consens
nodes within the reliable communication network using a A node is deemed to bacceptednto the TrickleDNS net-
constrained-randomization teChnique to establish limk¢he work if a majority of bootstrap servers accept the node using
network, which we describe later. the SybilLimit protocol. The SybilLimit protocol guarams

TrickleDNS also uses this reliable communication netwofk@t if the honest region of the social network is fast mixing
to proactively disseminate useful DNS records (NS-recorff€n any honest verifier node can discoyer— ¢)n honest
and A-records) of participating domains to all servers irea sh°des and at most learr@(logn) Sybil nodes per attack
cure and verifiable manner. Each TN pushes the DNS recoffi9€ where is a very small quantity [25]. In Section VI, we
of the domain it represents and additionally, also forwar§@OW that the existing social trust network among DNS server

the records it receives from its neighbors. The records arausfies this fast mixing property. Using this protocol, oe
self-verifying and carry public-key-cryptographic sigmes. guarantee that the bootstrap nodes can admit almost alshone

This proactive push-based protocol provides better aititis N°des while admitting very few Sybil nodes. This protocol
lower query resolution times, and faster update propagatioeﬁecuve'y prevents large botnets from easily infiltrgtithe
TrickleDNS network.
Name resolution in TrickleDNSTrickleDNS supports the

same query interface as existing DNS and interacts with non- ) o

participating nameservers through standard DNS protogols B- Decentralized Key Distribution

client can resolve a name, sdgo.bar, using TrickleDNS Each Trusted Nameserver (TN)generates a private-public
as follows: First, a client's DNS servers are set to poikey pair (s.k, s.K') independently. We call the tuplekid =

to one or more trusted nameserver in the TrickleDNS nefs.id, s. K, s.seq) the keyed identityof s, where s.id is the
work. These may be the nameservers of the client’s loddl for s and s.seq is a sequence number used to mark the
domain itself or other open-access TrickleDNS nameserveatest public key. We chose the identifier of a TN to be a
A TrickleDNS namesever then handles the queryféar.bar collision-resistent function of its IP address since IPradd

in the following way: 1) If foo.bar is a participating do-is the unit of identification of a nameserverin DNS. We discus
main, then the nameserver uses its locally cached NS gheé implications of this choice for the identifier in Sectign
glue A records for the domain’s authoritative nameservers,The immediate goal of the key distribution process is to
gueries them, and fetches a signed response records from emgure that each TN correctly learns the keyed identity lof al
of them. The TN can then verify the integrity of the returnedther TNs.

data since it has the domain’s public key. 2) If foo.bar is 1) Reliable Communication NetworkA reliable way to
not a participating domain, then the nameserver executeslistribute keyed identities to all TNs in the absence of a cen
regular DNS recursive resolution process starting with thralized certification authority is by forming a well-coruted
authoritative nameserver of the immediate participatiagept distribution network—a network with sufficient indepenten
domain. paths so that information communicated between TNs is



resilient to malicious or compromised servers. It is welbkm a new public key with a higher sequence number or because
that a network with at leagtk + 1 independent, vertex-disjointa malicious server created a fake keyed identity for it. The
paths between each pair of TNs can tolerate up mealicious identity graph enables to verify the authenticity of a keyed
servers [22]. Two paths are vertex-disjoint if no internageli identity ¢.kid by checking whether there are at Iee{§1
server appears on both the paths. vertex-disjoint paths between andt¢ in G,. If two keyed
Prior work [22] shows that random, peer-to-peer networkiglentities for the same servempass this check, thenaccepts
where each server is connected to a fixed numbeof the keyed identity with the greater sequence number. One way
other randomly chosen servers, provides an efficient way perform the disjoint-path check is by running a standard
of building well-connected networks. More precisely, siech Max-Flow algorithm.
random network of neighbor degré2 is guaranteed to have Protocol: TNs exchange their keyed identity through the
at leastD vertex-disjoint paths between any two servers withroadcast ofsigned path vectormessages to their broad-
high probability. However, an unconstrained network, whercast neighbors. A TNs sends a signed path vector (SPV)
participating TNs have the freedom to chose any other T#v[(s.id, s.K, s.seq), s.b;.id]s., to its broadcast neighbor
as their neighbor, has limited attack resilience. An agacks.b;. The SPV contains the keyed identity of the sending TN
can connect a set of colluding servers as as neighbors o&rad the identity of the receiving broadcast neighbor; thelesh
targeted nameserverand can feed bogus data 40 To form path is signed using the Ths private key. Any other TN can
such a network for reliable communication, TrickleDNS converify that the SPV has not been corrupted using the embedded
strains the neighbors of a Ththrough the use ofonsistent public key.
hashing[12]. One way to use consistent hashing is to have The receiving server = s.b; then extends the SPV
an identifiers.id for each TNs drawn from a circular key by adding its own keyed identity and the keyed identity
space. Then, the TN can pick itsi*" neighbor as that TN of the broadcast neighbor to which the SPV will be for-
whose identifier is closest th(s.id|i) clockwise on the key warded, signs the extended SRYuv[spv(s.id, s.K, s.seq),
space, where the operatignrefers to concatenation and  s.b;.id]s., (r.id, 7. K, r.seq), r.b;.id],, with its private key,
is a collision resistent hash function whose range is theesaand propagates it. We denote an SPV that traverses servers
circular key space. The neighborsgfthus chosen are termedsi, . .., s, @SSPV = spv[(s1,...,8n)]-
its broadcast neighbors A receiving TN r rejects an SPV under three conditions:
Choosing broadcast neighbors through consisterirst, the SPV has bogus link relationships; that is, the
hashing enhances the attack resilience in two ways: Finst, link relationships do not obey the consistent-hashingeas
attacker needs to compromise or introduce a large numbemefighbor selection rules. Second, the SPV contains no new
servers in the system before it can control a sufficient numBiak information about keyed identities. And, finally, th&®®
of the broadcast neighbors of a targeted nameserver. Secalgs not verify itself; that is, some signature in the SPVsdoe
any attempt by the attacker to fake a broadcast neighbwt match the corresponding public key. If the SPV passes
relationship with a targeted nameserver will be discovédnged these checks, it is scheduled to be further propagated to the
other TNs since consistent hashing provides easily-vblija broadcast neighbors.
deterministic neighbor relationships. A network consteasi Overhead Analysis: We can analyze the message overhead
in this manner increases the attack resilience of reliabdé the Reliable Key Broadcast in the steady state where all
communication from a constant numbér of malicious TNs have learned a stable topology and a new TN joins the
servers, shown in [22] to a sizeable fraction of the totsystem. The new TN creates3 new neighbor relationships.
network O(n/logn)). Since a TN does not forward an SPV if it does not contain
Theorem 1:Reliable communication can be achieved witlany new neighbor relationships, each TN forwards at most one
high probability between any pair of non-malicious nameéSPV for each new neighbor afto each of its neighbors. As
servers in the presence 6f-2—) malicious servers provided a result, a TN must perfor®(B?) verifications and transmit
the number of broadcast neighbafs > alogn for some O(B) SPVs for each new TN joining the system.
o > 6In2 ~ 4.15 and the paths used for reliable communi- The overhead may be higher if several TNs join the system
cation are of length at mostg n. simultaneously, but we expect large simultaneous joinseto b
A proof is presented in the appendix. In other words, Iare in practice. More seriously, a malicious server conld i
every TN has a minimum number of broadcast neighbors, tHece the exchange and verification of a large number of SPVs
SNN will contain sufficient number of short vertex-disjoin®y creating fake server identities and neighbor relatigsh
paths between every pair of TNs such that a majority of thelggding to a DoS attack on the system. Rate limiting on
paths do not have any adversarial nodes with high probgbilithe number of SPVs accepted by a TN from each neighbor
2) Key Distribution and Verification:Once the reliable €liminates this risk of a DoS attack.
communications network is setup, key distribution follative
same protocol described in [22]. We give a brief overview ¢¢- SNN Maintenance
this protocol for completeness. This section details how TrickleDNS accepts new TNs into
State: Each TN s stores anidentity graphG, with distinct the system, handles failure and leaving of existing TNs, and
keyed identities it learns and the neighbor relationships brevocation or replacement of public keys.
tween them. Note that there could be more than one keydmn: A new nameserves uses the TrickleDNS join protocol
identity for the same server either because the server gieuer where the bootstrap nodes have to approve every new node us-




ing majority consensus after running the SybilLimit prasbc  Note that the different authoritative nameservers of a doma
Once admitted, the node obtains the set of reliable dissemiwill be mapped to the same certifying servers if their IP
tion links by contacting a few existing TNs calldsbotstrap addresses are from the same block. This reduces the verifica-
servers The bootstrap servers returnddheir current identity tion load on the certifying servers, especially when malisi
graphss constructs its identity grap@'s by applying majority servers request verifications for false claims. Moreovej-m
consensus; that is, it accepts a keyed identity if a majafity cious adversaries only owning a small number of IP address
the bootstrap servers know about that keyed identitthen blocks cannot launch DoS attacks by requesting authority
identifies its broadcast neighbors from the list of TN idées$i certificates.
it has and initiates the broadcast of its keyed identity. A certifying serverc checks whether a TN is authoritative
Failures and Departures TrickleDNS employs a for a domainD using the DNS hierarchy or TrickleDNS itself
heart-beat protocol to detect failures. Each ¥)eriodically if the parent domain is part of TrickleDNS. perfoms the
broadcasts a signekkeep aliveincluding its keyed identity. check as follows: 1) ifc reliably knows the public key of
A TN removes a keyed identity from its identity graph if itthe parent domain already it looks for a cached NS records
fails to receive a few consecutiveep alivesor that keyed and glue A records signed by the parent indicating that
identity. is authoritative forD. 2) otherwise,c performs a complete
Key Renewal Finally, a TN might want to revoke its currentDNS lookup identifying the parent domain's nameservers and
public key and start using a new pair of private-public key$etching the NS and glue A records from them. It then
Key revocation and renewal in TrickleDNS is trivial ancchecks that a majority of the parent domain’s nameservers
happens when the TN initiates a SPV broadcast with a n@wknowledge that is authoritative for the claimed domatn.
keyed identity with the new public key and a higher sequenceThe i*" certifying serverc; for a TN s provides a signed
number. authority certificatecert|c;.id, s.id, D.id, expiry_time]., . t0
Note that the above processes of joins, failures, and kewttesting its authority over the domain which s broadcasts
renewals might create temporary inconsistencies in thtitge on the SNN. Any server can verify the certificates using the
graph; few keyed identities might represent departed ¢edai public key of the certifying server. A server accepts that
nodes or older keys while new keys and node identitiés authoritative forD if it has at least[$] valid authority
may not have been included yet. We intend to tolerate thestificates.
inconsistencies simply as part of the path disjointednkeslc  In order to overcome the certification mechanism, an ad-
where they may cause false positives. A slight increase Vgrsary needs to compromise a majority certifying servérs o
the neighbor degree, and thereby the network connectigity,a domain. Similar to key distribution, randomization makes
sufficient to alleviate the effect of false positives. difficult to succeed as shown in the following theorem:
Theorem 2:Every non-malicious nameserver can be reli-
ably bound to its domain with high probability in the presenc
of fxn malicious servers, wherg is an upper bound on the
The purpose of Reliable Name Binding is to tightly coupl&action of adversarial servers in arservers system, provided
TrickleDNS with the current DNS. The end-goal of TrickC > 3logn, wheres = 116£1—2:th In 2.
leDNS is to be a safety net for the existing DNS as opposedA proof of this theorem is presented in the appendix.
to setting up a completely new namespace. Hence, if aTNAn authority certificates may need to be revoked since a
within TrickleDNS claims to be the authoritative nameserveyameserver currently authoritative for a domain may not be
for the domainfoo.bar, then the property we require fromauthoritative forever. The certificates haveexpiry time after
reliable name binding is that: an external client doing a @amwhich it is not accepted. We expect a certificate’s lifetime
lookup through TrickleDNS fofoo.bar should be redirected to be of the order of days so that the certificate generation
to s only if s's claim is genuine. and propagation overhead is low and loose-synchronizafion
Each participating domai» chooses a private-public keyclock across servers is sufficient to enforce certificatergxp
pair (D.k, D.K) independently and createsd@main keyed However, TrickleDNS permits a certifying server to explic-
identity D.kid = (D.name, D.K, D.seq) for itself. A partic- itly revoke a certificate by broadcasting a sigrmeslocation
ipating authoritative nameserverof the domain then broad- revoke|c;.id, s.id, D.id, expiry_time]., i
casts the domain keyed identity on the SNN by signing it witthroughout the system if required.
its private key. For its message to be accepted, the TN needs the described certification process, trust is placed en th
to prove to the system that it is indeed one of the authoréaticurrent DNS hierarchy. While this is a compromise as DNS
nameservers of the domain. is not secure in the first place, we believe it is practical for
TrickleDNS generated thiproof of authoritythrough in- three reasons. First, it reduces the large trusted congputin
dependent verification by randomly chosen peer TNs callggse (TCB) involved in peer-to-peer DNS alternatives to the
certifying serversEach TNs belonging to domaiD connects much smaller TCB along the DNS hierarchy. Second, higher-
to C certifying servers in a similar manner as it choosdevel, parent domains typically tend to have better rednoya
its broadcast servers, that is, constrained random satecti

through consistent hashing. Thg Certifying server ofs is 1Looking for agreement might generate false positives tse@ometimes
DNS servers respond with different set of records dependmghe location

that server whose |der_1t|f|er IS clogest t0 SHA&=1po..b-11)  of the server or the client. However, this is not a seriousblern for NS
clockwise on the consistent-hashing key space. records which are seldom generated dynamically.
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than low-level domains as we show in Section VI. Finally, illomain, the adversary either needs to compromise a majority
the absence of DNSSEC or an alternative central certificatiof the certification servers, called certification attack or a
authority, an approach based on independent verification asufficient number of servers in the paths between the domain’
consensus provides some resilience against compromisesuthoritative nameservers and other TNs, callgdth attack

current DNS. TrickleDNS achieves this high resilience against certifi-
cation and path attacks through randomization, that is, dis
E. Pushing DNS Records tributing the vulnerable servers uniformly in the overlahe

success of certification attack depends on the probability

¢ tThethrehab![e ?'jtrt'blg.'on Of. dotma'r.] a_lf]q Iflergilrsk?s m;zc_'l'éf finding a majority vulnerable servers among certification
ates the rest of data dissemination in frickie - AUTOI 0 vers, a value that can be made very low by increasiag

tive nameservers of a doma@nbroad_cgst DNS records SIgneO‘fequired. Similarly, the probability of success of a pattaek

by the domain key followed by their individual server keys.C n be made as low as desired by increasing the neighbor
TrickleDNS proactively propagates only a certain set zf:greeli as required

critical records that include the delegation or NS recor SOf course. an aoiversary can also hijack a domain by

used to |de_nt|fy the authoritative namservers of a doméa, tcompromising one or more of its parent domain nameservers

corresponding glue (A) records that prowd_e the IP addréss arental attack If some of the parent domains are part of

the nameservers, and th? start of authority or SOA reCOraPickleDNS, then the above security analysis also applies t

Consequently, a TN typically needs to perfon_’n a S'ng.lt%em as well. Otherwise, this dependence of current DNS

lookup to resolve a DNS query for a participating domai

d in redirection th h & CNAME h Hierarchy is an unavoidable risk inherent in the DNS proftoco
(a_ omain re |rec_t|_on through a response, howevey, Identity Attacks: An adversary could increase its chances
might require additional lookups). We could avoid this lapk

b tively di inati d iated _thof succeeding in a path attack or certification attack byfiarti
y proactively disseminating every record assoclated &t iy jncreasing the number of malicious servers in theesys

domain, but this cop5|q§raply Increases the bandw@th-ovgp breaking randomization by controlling the identity okth
head on the TNs diminishing their mc;en'uye to part'_c'pat%'erver. A rich and powerful adversary might be able to launch
Alternatively, we cou_ld enable proactive d|ssem|nat|o_rn foan attack using a large network of compromised hosts called a
popu_lar reco_rqls (mail SEIVers, web servers, efc.). D_o_lng BBtnet. TrickleDNS limits the number of compromised hosts
requires additional mechanisms to ensure that particigatiy . .on enter the system by leveraging SybilLimit and the
domains do not overload the system. Sé)cial trust links that already exist implicitly in the DNS.

DNS records propagated on TrickleDNS are not .store TrickleDNS is secure against infiltration by Botnets due to
forever at each server, but only as long as tiee-to-live a combination of two factors. First, by using the SybilLimit

on the DNS “‘?‘CO”?' indicates. This ensures that blndlng_s ﬂb%tocol on the social network, TrickleDNS can guarante th
are no-longer invalid (for example, an expired sub-domain)

the total ber of Sybil identities is boundedlby » identi-
that are signed by old keys are expunged from the syst o fotal number of Sybil ICeNTIes 1S bounded bg 7 Ident

H it ad in ch d (for i h etrigs per attack edge in the social network. Second, thebtelia
owever, if a domain changes a record (for instance, the éommunication protocol for disseminating public keys is re

address of a nameserver), it can still proactively broadbas silient in the face of upt® (n/ log n) adversarial nodes. ff is

new record and thereby avoid the long update Propagatign, , mper of attack edges that an attacker owns in the social

dela_iy of current DNS' network, then the number of Sybil identities in TrickleDNS i
Finally, dynamically generated DNS records (for exampl%bunded byylogn << n/logn. In practice,y is a constant

DHCP addresses) require the private key to be stored in M&dkce it is indicative of the number of real authoritativenea

ory to sign records O”!if‘e posing_a ris_k of key. co.mpromisgervers compromised by a botnet. In smaller networks, the
This prob_lem_can be mitigated b_y isolating the SIgning PESCE, ohabilistic security guarantee can be strengtheneccatdht
and running |_t on a node that is protected within a firewal f increased communication, by increasing the degteaf
only communicates on restricied ports, and does not also "2 number reliable communication links of each node. To
the name server. achieve perfect reliable communication without relyingaoty
randomness, we requirt> 2vlogn + 1 which is feasible in
V. SECURITY OF TRICKLEDNS small networks.

In this section we provide a top-down summary of the Another, more subtle way to launch an identity attack is to
security properties of TrickleDNS and briefly discuss themttack the IP layer by a) spoofing IP addresses, b) IP hijackin
implications. or ¢) man-in-the-middle attacks. TrickleDNS is immune to IP

A fully-decentralized, peer-to-peer solution to DNS sush apoofing because it performs two-way communication using
TrickleDNS faces at least two types of attacks from malisioul CP. IP hijacking by compromising Internet routing, howeve
adversaries: could be dangerous; if the hijack is partial it is likely toviea
1. Server Compromises:An adversary might take advantagdess impact as TrickleDNS connects each server to several
of a software vulnerability and compromise one or morethers randomly distributed in the Internet. On the othercha
participating nameservers. While TrickleDNS cannot atiaté a complete hijack can be treated as a compromised IP address
software vulnerabilities or prevent compromises, it makes IP address block; the above analysis for server compesmis
a successful domain hijack from compromised TrickleDNBolds for IP hijacks as well. Man-in-the-middle attacks dav
servers incredibly difficult. In order to successfully Iokaa a similar impact as hijacked IP addresses and can be treated



as a server compromise. extend of reliable communication happens for all netwozksi
Finally, we expect that a participating domain interested shown. However, as expected, there is a critical pointf of

its own security will take the necessary measures (ie. apfdgyond which the fraction of reliably communicating pairs

patches) to secure its own nameservers. TrickleDNS does dddstically drops.

protect a domain from compromises to its own nameservers2) Resilience from Certification Attack®iext we evaluate

Its goal instead is to protect a participating domain frorihe resilience of TrickleDNS to certification attacks. Higu

vulnerabilities in other, less-secure domains. shows the CDF of the fraction of non-malicious servers in
the certifying server set of a TN. Here, we set the number
V1. EVALUATION of certifying servers for each domain to begn and the

In this section, we evaluate the security properties and tﬁgmber of servers in the system to be= 6553.6' Rec"]!” :
performance of TrickleDNS. that a_'_I'N _succumbs to a certlflcat_lon att_ack if a majority
of certification servers are compromised. Figure 4 shows tha
_ ) even in the presence g¢f = 5% compromised servers in the
A. Security Analysis system, the probability of a genuine server succumbingeo th
While the theoretical results in Section Ill showed thatttack is very small (less thar®—°). Even at an unreasonably
TrickleDNS can handle(n/logn) adversarial servers, thishigh fraction of 20% compromised servers, only about 1% of
bound is asymptotic and may not completely reveal thgenuine servers succumb to the attack.
effectiveness of TrickleDNS in real-world settings. Insthi 3) Resilience from Parental AttacksTo understand the
section, we evaluate the resilience of TrickleDNS to thdnpatmpact of attacks to legacy DNS servers on TrickleDNS, we
certification, parental, and Sybil attacks defined aboveutpn analysed a snapshost of inter-domain parent-child relstiips
simulations. in DNS as it existed on July 22, 2004. This snapshot was
We simulated random topologies to represent TrickleDNg=nerated from a study done at Cornell University [19] and
networks. To generate a topology ofservers, we assignedcontainsl66, 771 distinct name servers that contribute towards
a random IP address to each node and connectedfit #o resolution of597,196 distinct domains.
logn other nodes according to the rules of Section Ill. To Figure 5 shows the CDF of the number of attacks against
analyze security attacks, we modeled a global adversaty the authoritative nameservers of the parent domain that the
controls a random fractiorf of servers uniformly distributed majority-consensus approach can tolerate. In generak it i
in the topology. These servers are assumed to collude t@cap%;—lj for compromises and — 1 for DoS attacks, where
maximum damage to the system. is the number of distinct authoritative nameservers ingdlv
1) Resilience from Path AttacksFirst, we evaluate the The key observation from Figure 5 is that close to 90% of
resilience of TrickleDNS from path attacks. Recall that fothe domains able to tolerate at led@stcompromises in its
a correct dissemination of a key from a source node toparent's nameservers. This is surprising because, in ggner
destination node, at least a majority of vertex-disjointhga more than 80% of domains have only two nameservers [15],
between the pair of nodes should be void of compromisgtB]. The surprisingly good resilience to attacks at pasent
servers. We define good pathin the generated topology comes from the DNS hierarchy being flat and a large number
as a path from the source to the destination passing owfydomains (even though not secure on their own) fall diyectl
through non-compromised nodes. For reliable communigatiaunder the more secure top-level domains. The sharp increase
the number of good paths must be at lef@stog ] since the in parental resilience a6 corresponds to the large number
neighbor degree i&logn. We call such a pair of servers aof .comdomains that are served by the thirte@om name
reliably-communicating pair serverg Finally, Figure 5 also shows that the resistance to
Figure 2 shows the CDF of the number of good patH30S attacks for parent domains is good.
between node pairs for a system with = 65536 servers  4) Resilience from Sybil Attack&or the purposes of evalu-
of which f = 5% are compromised and controlled by arating the effectiveness of using the SybilLimit protocolthe
adversary. For this scenario, each nodesliaseighbors and DNS topology, we constructed a graph of DNS nameserver
an expectedl6 disjoint paths with every other node. Thustrust” relationships and measure expander graph pragserti
any pair of nodes witlh or more disjoint paths is a reliably of this graph. We show that the number of new neighbors
communicating pair. discovered via vertex expansion increases exponentially a
In Figure 2, at leasD9% of node pairs are able to com-therefore the graph is fast-mixing, implying that the Sioilit
municate reliably. This may appear to be not high enoughrotocol guarantees will apply.
but note that we are looking at a worst case scenarip%f  To construct the DNS trust graph, we used the same DNS
of malicious nodes all colluding together. In practice, ave'relationships dataset obtained from Cornell [19] we usedipr
expect much fewer compromises at any given time and ever®ifsly. We represent the nameservers as vertices and uedirec
there are many compromised servers for them not to all cellugdges as the trust relationships between all authoritativee-
together. Moreover, we can easily increase the neighboedegservers of a domain. To this, we also add edges representing
if required to handle a greater number of compromised serveparent-child dependencies, that is, all nameservers gigign
Figure 3 shows the tolerance to path attacks for different, ) ) ) )
In reality, there are more than thirtee@omnameservers behind the thirteen

values of malicious fractionf and network sizen. Thes_e published IP addresses. In this analysis, we just counnfal®y the number
numbers are an average a@f) runs. We observe a high of distinct NS records returned.
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to domain foo.bar.edu have edges to all authoritative name 10408
servers ofbar.edu les07 |
We found that the above graph including the parent-child 16406 |
trust links was nearly completely connected — 166,758 ssrve £ ool
out of 166,772 (the disconnected server names may simply be 5
artifacts of the crawling methodology). Without includitige -
parent-child trust links, the graph was extremely discateg: g 1000
. (=
with 70588 components. wol | ]
We perform a vertex expansion by running a breadth first WIDNS Hierarchy (avg) ——
10 ¢ 2] W/DNS Hierarchy (min/max) |
search (BFS) from the server nodes of a randomly selected wiout DNS Hierarchy (avg) =
) : _ 1 : w/out QNS Hierarchy (ml‘n/max) =}
domain in our trust graph and count the number of unique 0 5 10 15 20

Hop Count

neighbors at each iteration. Figure 6 shows the min/max/avg . .
number of new neighbors discovered per hop from 104 & Neighbors per hop in DNS trust network

randomly selected seed domains. We can see that the diamiée@Xisting trust relationships between domains can ere

of the trust graph is only 12 hops with the trust links fronfged on to mitigate Sybil attacks. These properties have bee
the DNS hierarchy indicating a high degree of connectednééieved withlogn broadca_st and certifying servers. These_
in the graph which is the property that we want to show. [pyStem parameters can be increased by a constant factor with
contrast, without the DNS hierarchy edges the graph diameliélle added overhead so that the path and certification re-
is of the subcomponent selected reaches 32 hops. We conclgifince can be improved. Similarly, resilience to Sybiaeks

that SybilLimit would maintain its guarantees for the authocan be improved by encouraging domains to form more trusted

itative nameserver trust topology if the DNS heirarchytsstr links. On the other hand, the parental resilience is not éasy
relationships were included in the graph. improve without having the parental domain actually joig th
Summary The analysis in this section tells us that i) thd fickleDNS network.

reliable communication mechanism and the certificationtmec

anism can tolerate a significant malicious presence, iyuga B- Performance Analysis

ing the parental nameservers to verify the authority of agtam In this section, we describe experiments to measure the
server before it joins TrickleDNS is a reasonable approacti, performance of TrickleDNS and compare it with legacy DNS.



Here, we are interested in quantifying the following threa majority vote on their responses. In our experiments, the
metrics: 1) lookup latency of DNS queries in TrickleDNS, 2)esolver contacts 3 TNs for redundancy. The latencies er th
time taken to push DNS records between name servers, axgeriment is shown in Figure 8.

3) memory and bandwidth overhead of pushing DNS records.We consider three scenarios corresponding to no node in the

For benchmarking performance, we implemented the TiNetwork being malicious, antl and5 nodes being malicious
functionality based on the djbdns [3] codebase. The meatespectively. A malicious node when contacted simply alow
anisms for reliable communication described in Section Ithe query to time out. The first observation is that, in the
are implemented as a reliable communication toolkit andedian case, queries take almost the same time as the case
exported to the TrickleDNS implementation codebase. Owhere only one node is contacted. Further, the addition of a
evaluation used024-bit RSA keys for authentication. The TN single malicious node does not affect the latencies bedhese
implementation is layered on top of the toolkit. Each TN actservers are chosen uniformly at random for each query. With
as a caching DNS nameserver that can support the operatiomsalicious nodes, the median latency only increases by about
and optimizations present in current DNS. 8%. With a larger network size, a single malicious node will

We deployed our implementation of the TN on thig- have a smaller influence on the query latency.
node PSI cluster [2]. To compare the lookup performance of To summarize, for domains that are part of TrickleDNS,
TrickleDNS with legacy DNS, each TN acts as an authoritatiiueries are answered much faster than legacy DNS both in
nameserver. Queries are sent to a randomly chosen TN. The cases where the local DNS server is a TN and when it
TN tries to answer the query from its cache; otherwise it not (and must send out redundant queries). Although our
queries legacy DNS and reflects the response record. Whewaluation tries to simulate the effect of queries in a real
ever a TN gets a new record, it pushes it to the other serversckleDNS deployment without doing any form of namespace
This gives us an estimate of the overhead of pushing DNfartitioning, the real-world performance of such a system
records. Queries are generated from a portion of the reabuld depend on the regions of push-pull, the nature of the
workload collected by Jungt al. [11] at MIT with 281,943 resolver, and the latency in fetching the final A record.
total queries to 47,320 distinct domains. 2) Overhead of Pushing DNS record®roactive dissem-

In our testbed, we executeid TN instances on different ination of keys and DNS records in TrickleDNS does incur
nodes with each instance having an average degreé. ofadditional overhead. Within our experimental setup, we com
Each TN instance reliably discovered the other instancespnted two quantities: (a) the time incurred by a new TN to
the network and then pushes nameserver records to the thesiably broadcast its key when it joins the network; (b) the
instances. time incurred by a new TN to propagate a DNS record in

1) Lookup Characteristics:We first compare the lookup a secure manner. As expected, we found out that the update
latencies in TrickleDNS and the legacy DNS. From the digime for reliable broadcast keys was much higher than the tim
cussion on the lookup process in Section Ill, we notice thai broadcast DNS records. T®!" percentile of these two
the time to perform a lookup is dependent on whether tlyantities werel.5s and180 ms respectively. While reliable
client's local DNS server is part of the TrickleDNS. Giverbroadcast of keys is relatively expensive due to the need for
a target domainD, if the local DNS server is part of the path-vector signature computation and verification openat
TrickleDNS, it can respond to a query with the NS and gluihis operation is relatively infrequent (on the order of shay
records of an authoritative name serveriof Otherwise, the since the underlying topology is not very dynamic. Once
local server reflects the query to a TN. To enhance securikgy distribution within the SNN is accomplished, subsedquen
the local server may simultaneously queries different This apropagation and verification of DNS records incurs very low
wait for a majority consensus. overhead.

The first experiment deals with the scenario where theBased on our experiments, we found out that the system pro-
local DNS server is a TN. In this case, Figure 7 shows thides for the TN instances indicate that TrickleDNS incuns lo
distribution of query latency for TrickleDNS and legacy DNSbhandwidth and memory overhead. The bandwidth exchanged
Only queries which were not answered from the local caclhetween TNs is 1.35 KBps of which only 12% of the bytes are
were included in the measurement. We measure the latenceised in reliable communication. This represents a verylsmal
of those queries for which the TNs are already populated witlandwidth overhead. The net memory usage of each TN was
the target records. Otherwise, the query latency wouldughel roughly 9.356 MB of memory at the end of the trace with 6804
the latency of fetching the record via legacy DNS. The Figurecords being stored. The state maintained and propagated p
shows that the median latency of TrickleDNS is a factor of 1@omain by our implementation is less thEhKB. In addition,
lower than legacy DNS. Note that the latencies shown in botlur implementation can verify the validity of roughdy, 000
cases are simply the latencies for fetching the authoréd@iA  signatures every second.
and glue A record. The DNS clients then have to contact theRecent work by Handleyt al. [9] shows that roughly
authoritative server for the target A record which will imcu0.5% of domains change name servers and abbuf of
an additional delay irrespective of whether legacy DNS a@omains expire every day. Extrapolating to the entire DNS,
TrickleDNS is used. they claim that roughly20, 000 domains change nameservers

In the second experiment, we consider the case in whiahd100, 000 domains expire everyday. For the entire DNS this
the client’'s local DNS server is not part of TrickleDNS. Theranslates to an update rate b Kbps [9], a rate that can
local server then reflects the query to a set of TNs and takesy easily be handled by our system.
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contacting an TNs compared with the legacy DNS latency.

In summary, the overhead of pushing name server record§lg
reasonably small in terms of the amount of state maintained,
bandwidth requirements, memory requirement and proogssin
overhead. [13]

[14]
VIl. CONCLUSIONS
This paper presented TrickleDNS, a peer-to-peer proactll\}g]
dissemination system for DNS. TrickleDNS is a safety net
for DNS and is meant to act as a stopgap to secure DNS u
DNSSEC is eventually fully adopted. The primary contribuati
of TrickleDNS is to be secure against malicious attacks
that may attempt to corrupt or hijack DNS records. To thid”
end, TrickleDNS builds a robust overlay network that can
tolerate commonly-encountered attacks, while providiog | [18]
lookup latency, fast update propagation, and improvedifail

resilience. [19]
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APPENDIX

A. Proof of Theorem 1

Proof: Let h denote te maximum hop-length of the set of paths

used for establishing reliable communication between amy f

(11]

J. Jung, E. Sit, H. Balakrishnan, and R. Morris. Dns periance and nodes. The reliable communication network we have corstuicas

the effectiveness of caching. IMW '01: Proceedings of the 1st ACM & diameter ofogn. Given the symmetry in the connectivity pattern,
SIGCOMM Workshop on Internet Measuremepaiges 153-167, New One can construct a set dp disjoint paths between any pair of
York, NY, USA, 2001. ACM Press. nodes which have comparable length. In a DHT constructiom, o



can constructD paths of exactly the same path lengthleg n. In
the randomized case, the maximum hop length across theseghkly
logn + ¢ for some constant with high probability. Given this, we
show that one can achieve reliable communicatiorGirwith high
probability in the presence a@d(n/h) malicious nodes.

Consider any set ofl identity-disjoint paths between two good
nodess and t. Random variableX = 3¢ | X;, whereX; is 0 if
there is a bad node on the path andtherwise, denotes the number
of good paths betwees andt. Let Y denote the number of bogus
paths faked by malicious nodes #0By the constraints imposed by
the path-vector signatures and the topology verificatibis, tequires
each malicious node’ that produces a path s, ..., sk, s’ to have
other malicious nodes presentsat . . ., s. For each identity-disjoint
bad path, there must be as many malicious nodes being fingered
by s. Denoting these nodes by, i.e., Z = Zle Z; where Z; is
1 if the 4" neighbor ofs is malicious and0 otherwise, we have
Y < Z. BoundingPr[X < Y] is done by boundinPr[X < Z]
sincePr[X < Y] < Pr[X < Z].

Writing W = X — Z = 3¢ | (X; — Zi), Pr[X < Z] is rewritten
as Pr[W < 0]. For a set of identity-disjoint paths, th&;’s are
independent provided each node chooses its neighborsrunhfat
random from the set of all nodes. Denoting the fraction of hades
by f. E(Z;) = (1 — f)’”*l whereh; > 1 is the hop-length of path
i. The Z;’s are similarly independent witl’(Z;) = f. We have

EW) = Y (E(X:)—E(Z))

S MR
> D (=i =1)—df

> d(1—hf)

Hereh is the maximum hop-length of any path. Requiriigi¥’) > 0
gives us the conditioffh < 1. We use Hoeffding’s inequality for the
sum of variableg X; — Z;) bounded betweefi-1, 1].

Pr[W < 0] = Pr[W —E(W) < —E(W)]
EW)?
e T 2d
_d(1—fh)?
2
1

< —
n 3

e

by requiring 24="° > 31nn. Settingd = alogn, and using the
fact that fh < 1, we getfh < 1 — g Thus the fraction of bad

nodes that can be tolerated (¥ 7) for sufficiently largea. Given
h = O(log n), the protocol can handi®(n/ log n) malicious nodes.
|

B. Proof of Theorem 2

Proof: Since the certifying nodes are chosen independently and
uniformly at random from all the nodes, we simply bound the
probability that less than a majority of these nodes are g8etting
¢ = C'L, we use the Chernoff bound on the binomial random variable
B(c,1 - f).

—c(1=f)e?
Pr[B(e,1 - f)] <c(l—f)(1+e) <e™ 2
Setting LU0+ — < we gete = l—5ap.€¢>0— f <3
Requiring <30 > 21nn gives usc > 2?&12}{3 Inn. n



